Neutrino Colliders

Reinhard Schwienhorst

MICHIGAN STATE UNIVERSITY

arXiv:0708.0160 [hep-ex]

Aspen 2008 winter conference

Outline

- Introduction
- Colliding neutrinos with other particles
- Neutrino collider configurations
- Cross sections
- Conclusions

Neutrino beam calculation with BMPT Cross section calculation with Madgraph

Current neutrino experiments

- Recently established non-zero neutrino mass and neutrino flavor oscillations
- Current experimental goals:
 - Measure parameters (angles, Δm)
 - Identify favored models indirectly

Neutrino physics

- Experiments currently probe mass mixing matrix
 - Questions:
 Parameters of mixing matrix
 CP-violation in neutrino-sector?
 - Maybe in the future also Majorana vs Dirac nature
- But: for other particles, we are currently exploring the mass generation mechanism. Why not for neutrinos?
- 2 main questions:
 - Origin of mass?
 - Nature of right-handed neutrinos?
- Current or planned neutrino experiments do not directly address the origin of neutrino mass

Origin of neutrino mass

- Neutrino mass
 - → right-handed neutrinos exist
 - → there must be neutrino interactions beyond SM
 - → with other beyond-SM particles
 - Can we produce and observe the right-handed neutrino or other possible non-SM particles coupling to neutrinos?
- Higher order symmetries lead to W and Z bosons
 - If they couple to right-handed neutrinos, we might be able to produce them
- Popular theory: see-saw mechanism
 - Right-handed neutrino m_{RH} is heavy
 - At the GUT scale in most theories, but not necessarily
 - Current experimental limits $m_{RH} > 100 \text{ GeV}$
- Many other possibilities: sterile neutrinos, 4th generation, singlets, more Higgses, and many additional particles

Neutrino interactions at high energy

- t-channel W boson exchange
 - also Z boson exchange

- s-channel W boson production
 - Sensitive to new heavy
 boson W or charged Higgs
 - Or other new new particle coupling to neutrino and lepton
 - Possible new particle might decay to other new particles

Neutrino-neutrino collisions

- SM: *Z*-boson production
- New heavy boson Z'

- Pair-production of right-handed heavy neutrinos N
 or neutrino-Higgs H⁰
- Neutrino-Higgs production via Majorana neutrinos

Neutrino-proton collider

- Fermilab: neutrinos from the Tevatron on protons from the main injector (or the other way around)
- Cern: neutrinos from the LHC on protons from the SPS

- Assume MI can deliver 10^{14} protons per bunch and 5×10^7 bunches per year
 - similar to "Project X"
- Results in neutrino-proton luminosity of 0.02 nb⁻¹ per year
- Neutrino-proton cross section:
 - -1.5 nb at the Tevatron
 - -7.5 nb at the LHC SPS
- Need factor ~100 higher proton intensity just to get started

Neutrino factory based neutrino-proton collider

- Neutrino beam from muon storage ring
 - With current muon storage ring design: 0.1 muons/proton, 0.1 neutrinos/muon

 Directed at proton beam in Tevatron (10¹⁴ protons/bunch)

 \rightarrow 40 nb⁻¹ luminosity

- 60 SM interactions per year

 Increase in protons/bunch ×10 yields luminosity comparable to Hera startup

Neutrino production at accelerators

- Only production mode realized so far:
 high-energy proton beam incident on target produces pion beam, pion decays lead to neutrino beam
 - broad spectrum, low energy
- Neutrino factory: neutrino beams from muon storage rings
 - high energy v's, many v's per proton on target

Neutrino-lepton collider

- Neutrinos from the Tevatron, electrons or muons in the Recycler
 - Requires 7 orders of magnitude higher beam intensities than LEP to reach ~pb⁻¹ luminosity

Muon storage ring

Aspen 2008

Reinhard Schwienhorst, MSU

Integrated lepton-lepton, neutrino-lepton, and neutrin-neutrino collider

Configure muon collider beams to create
 4 interaction regions

- Muon anti-muon
- Neutrino anti-neutrino
- Neutrino anti-muon
- Anti-neutrino muon

neutrino beam

interaction regions

• Luminosity:

- Neutrino-lepton: 600 nb⁻¹ per year
- Neutrino-neutrino: 60 nb⁻¹ per year
- Several detectors
 - Or several interaction regions in one detector

neutrino beam

muon collider

W boson production in a neutrino-lepton collider

- In a neutrino-lepton collider, the W boson is produced in neutrino-lepton annihilation
- With sufficient energy, other heavy objects can also be produced. Example: heavy boson W
- Large cross sections due to resonance production

Neutrino collider based on muon storage ring

- SM Z cross section large
 - Neutrino-neutrino collisions will occur in a muon collider, whether we want it or not
 - 30 events per year with current muon collider design
- Sensitive to Z' that couples only to neutrinos

Heavy neutrino production

• Heavy right-handed neutrino production through coupling to neutrino-Higgs (H^0)

N pair production at a neutrino collider based on 1 TeV muon collider

Plus any other new physics in the neutrino sector at the TeV scale

Triple gauge boson coupling: WW collider

- Two neutrino beams colliding with each other

- From muon beams:

$$w \rightarrow \mu u Z$$

- Physics background:
 - ZZ production
 - Z from initial state or final state radiation

Unique experimental conditions

- Beam crossing at several Hz, but only few interactions per day
- Beam alignment is a challenge
 - Collision rate to small for immediate feedback
 - Monitor beam profile with small detector
 - Downstream of interaction region
 - → monitor alignment continuously
- Large interaction regions
 - Muon storage-ring based neutrino beam diameter ∼1mm
 - − Proton-beam based neutrino beam diameter ~1cm
 - And plenty of low-energy neutrinos at larger distances

Experimental challenge: backgrounds

- Neutrino interactions with detector material
 - As little detector material as possible in the neutrino path
- At hadron colliders:
 - Neutrino beam is mostly at low energy and divergent
 - Interaction region/detector must be close to neutrino production target
 - Associated muon beams need to be deflected
 - Associated neutrals must not enter interaction region
 - Interaction region must be far away from production target
- At muon storage rings:
 - Associated muon and electron beams

<u>Summary</u>

- Neutrino mass implies the existence of additional particles (right-handed neutrino, ...)
- If these additional particles are light enough, we can produce them directly at neutrino colliders
- Neutrino colliders based on muon storage rings
 - Provide reasonable luminosity already with existing designs
 - Access the highest CM energies in neutrino collisions
- Any muon collider proposal should consider the neutrino collider potential
- Start thinking about the physics potential of highenergy neutrino collisions